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Set-Theoretic Problems of Null Completion in Relational Databases
Arthur M. Keller

Computer Science Dept., Stanford University

ABSTRACT. When considering using databases to rep- Husband Wife YearsMarried
resent incomplete information, the relationship between Marty Barbara 7
two facts where one may imply the other needs to be Marty <null> 7
addressed. In relational databases, this question be- <null> Barbara 7
comes whether null completion is assumed. That is, The information contained in the first tuple in.
does a (possibly partially-defined) tuple imply the ex- cludes the information contained in the other two t.
istence of tuples that are "less informative" than the ces the i aton a ie in eratwo tro
original tuple. We show that no relational algebra, that phe enirstat abase , all quere a rable frtthe entire database are also answerable from the first
assumes equivalence under null completion, can include tuple alone. However, if we delete the first tuple (say,
set-theoretic operators that are compatible with ordi in an update asserting that Marty is not married to
nary set theory. Barbara) but retain the other two, we can still answer

KEYWORDS. Relational databases, null values, set the- some queries asking how long Marty or Barbara have

ory. been married (but not to each other).
CR CATEGORIES. H.2.1, H.1.1, E.4. The above example illustrates the principle of null

completion [Zaniolo 82, Maier 83). Tuple t is at least
1. Introduction as informative as tuple a (written t >_ a) if the non-

Chincomplete - null attributes of a have the same values as in -t. A
Considerable work has been done in 81,ompat database D, is at least as informative as database D3

formation [ANSI 75, Codd 79, Goldstein 81, Grant 77, if for every tuple of D 2 there is a corresponding tuple
79, lmilinski 81, 83, Keller 84a, 84b, Lien 79, ipki in D, that is at least as inforihative. The principle of
79, Maier 83, Reiter 80, Vasiliou 79, Zaniolo 82. No null completion says that two databases are equivalent
solution has been completely satisfactory. One prob- if they are equally informative.
lem with many of the proposed solutions is that they
are incompatible with the rules of ordinary set theory. 2. Definitions
We show that no solution that includes the concept of
null completion [Zaniolo 821 can possibly be compatible We will use nulls to indicate that no information is
with ordinary set theory. known. Such nulls do not distinguish between the at.

One question that arises when considering incom- tribute being inapplicable to the tuple and the value is
plete information is the relationship between facts and known to lie in a particular set. A tuple t is at least as
partial versions of those facts. For example, the f-ct defined as tuple a (t _> a), if all non-null attributes in a
"Marty has been married to Barbara for seven years" have matching non-null values in t. The null completion
includes the facts "Marty is married to Barbara" and of relation R = { t I (s E R) A (t < s) ). "No informs.
"Marty has been married for seven yes." tion" nulls and null completion are Zaniolo's concepts

Consider the following relation encoding the three [Zaniolo 821.
facts mentioned above, with the functional dependen. Null completion induces equivalence classes of rela-
cies Husband -# Wife, YearsMarried and Wife --# Bus- tions for each relation schema. We designate the equiv-
band and YearsMarried.. alence class containing the relation R as f. We distin-

guish two particular relations which are members of i:
This work was supported in part by contract N00030-S2-G.02W0 The maximal representative of it is defined by
(the Knowledge Base Management Systems Project, Prof. Gbo
Wiederhold, Principal Investigator) from the Defense Advanced
Research Projects Agency and by contract AFOSR.80-0212 (Uni. R" t 1 (38 E R)(t < a)
versal Relations, Prof. Jeff Ullman, Principal Investigator) fro
the Air Force Office of Scientific Research, both of the United The minimal representative of A is defined by
States Department of Defense. The views and conclusions con-
tained in this document are those of the athors and shoud not R. -- r R a E R)(s 1 9 A a ! t).
be interpreted s represetative of the oecal policies of DARPA
or the US Government.
Author's addres: Computer Science pepartment, Stanford Uni- We now consider definitions of the set theoretic op.
versity, Stanford, CA O430.208. erations. We can define operations on thew equivalence
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classes that we will call union, intersection, and differ- 3. Theorem
ence. These operations take two equivalence classes and Let us consider some requirements for set-theoretic
result in an equivalence claw. A fourth opertion, mem-Leuscnirsoeeqrmntfrst-hrtc
bersfip, takes a tuple and an equivalence clawe and has operators. The following 5 axioms are adapted from

a boolean result. We will use the symbols 0, ri, and ordinary set-theory (Halmos 601 for extended relations.

- to represent Zaniolo's [821 operators on these equiva- (ttzR)= tkS)-R-- S (1)
lence classes, while 0, h, and " will represent arbitrary
definitions of these operators under certain constraints ((t 4 R) - (t 4 S)) R t S (2)
(to be described later). Similarly, 4 and 0 are symbols
for membership. (Choice of a particular membership t 4 R 0 .- t 4 R v t S (3)
operator constrains the chokes of the other three oper-
ators.) Although these operators apply to equivalence t 4 R h~ S t d R A t 5 (4)
classes-the extended relations, their intuitive meaning
is based on how they operate on the members of the t4RS$ *I4R/t S (5)
equivalence classes-the ordinary relations with nulls. It is interesting to note that Zaniolo's definitions satisfy
Therefore, we will often write R Ci S when we mean all of these axioms except for (5).
A 0 5, etc., but we remember that the results of both We shall also require several soundness criteria.
of them are extended relations. Since these operators First, if a tuple is a member of every relation in an
are well defined on the equivalence classes, it does not equivalence class, it must be in the extended relation,
matter which representative relation is used. and if a tuple is a member of an extended relation, it

Using our terminology, we rephrase Zaniolo's defi- must be in some relation in the corresponding equiva-
nitions of union, difference, and x-intersection by sup- lence clam.
plying representative sets of the resultant equivalence
classes. Union is defined (R Oi S)" -- R" U S. Differ- t E R. -. t 4 R -. t E R (I)
ence is R - S - R' - S. We define x-intersection by
(R h S)' - R" n S'. The definition of membership is Second, extended relations preserve set inclusion.
r R = E R.

Let us consider a few examples. We will use I to R C S - R S (t)
indicate a null value. Suppose R is (at, Mi). Then R*
consists of (al, bi), (.±, bi), (al, .), and (., .); It. Third, since extended relations are based on relative in-
consists only of (a, bi). Suppose S is (a, 1). Then formation content, only a tuple that is more informative
S" consists of (a, I-) and (1, 1); S. consists only of can determine membership.
(at, 1). Note that R 0 S - R and R S --'S S. Also,
T - R I S-" {(aI, bi),(.1, bl)). It is interesting to tt R-ti(reRIr>_t) (III)
note that t' = R.

With the above examples, we can illustrate that The fourth criterion requires compactness: if a tuple is
these definitions do not satisfy some basic theorems in a member of an extended relation, it can be traced to
set theory adapted to these extended relations. In par- a single tuple in the original relation.
ticular, R -_ (R - S) -- R A S (Halmos 601 is not
satisfied: the left side is 0 and the right side is S. t d R - (3r E R)(t 4 (r) (IV)

Another problem with Zaniolo's approach is that
the definitions do not reduce to the standard definitions Note that the leftward implication of the last two crite-
when only fully defined relations are used. For example, ria can be derived from (2) and (II). Zaniolo's definitions
suppose R is (at, hi) and S is (al, b2). Then R 6 S is satisfy all four of these last criteria.
(at, .), while Rfl s io. We shall show that no definition for the four set-

We can consider alternative definitions of the set- theoretic operators defined on extended relations can
theoretic operators, attempting to find a group that be compatible with (1)-(5) and (I)-(IV).
satisfy the bask theorems of set theory. (For exam- Theorem. No definitions of the membership, intersec-
pie, R A' S = (R. n 5') U (R" n S.) reduces to the tion, umion, and difference operators, respectively, de-
standard definition for fully defined relations, but still fined on extended relations are compatible with (I)-(5)
violates R - (n " S) = R A S.) and (I)-(IV).
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Proof (by contradiction). Suppose that a set of v _ tAt (r)) and let S = it). By (III) and(IV),
such definitions exists. Let 4, A', 0, and " be member- t 4 R. By (I), t 4 S. Therefore, by (4), t 4 R A} S.
ship, intersection, union, and difference operators, re- Since t I T., t f R. (Note that R. - R and S. = 8.)
spectively, defined on extended relations that are corn- Therefore R. n S. = 0. Consequently, t j R. n S.. But
patible with (1)-(5) and (I)-(IV). this contradicts (*). Therefore we have shown

From (1)-(5), we can derive the following theorems
we shall use [Halmos 601. t 4 E T. (,,)

R & S A R d T - R t (S A T) (6) Union. We will show that R 0 S : R. U S. t4 R U'
(R" S) h(RA S) -0 (7) S - t 4R vt 4S - t ER. v t ES. - t ER. uS.*-

R S R tS (8) t R. U S.. Thus, we have shown

(R S) A (S R) (R - S) (9) R 0 S R.us. ( )

(t0-R)A(RitS)(tAS) (10) Contradiction. Let R - ((a, L) ) and S = ((a, b)).

Lemma. R. n S. t R o S. We observe that R. = R and S. = S. Now consider
Proof of lemma. We first note that R. n S. C R.. R 0 S. Using (o * *), T = R ti S = ((a, b),(a, ±) }.

By (11), R. nl S. t R. Similarly, R. fn S. t S. By (6), But (a, -L) is less informative than (a, b). Therefore,
R.nS. C R $. T. ( {a, b) ). We note that (a, .) 4 R, yet (a, .L) 0

Intersection. We will show that R ) T by (**). This is a contradiction. 3

Suppose that R oI S is not equivalent to R. n S. for We have shown that no definitions of the foir set-
some R and S. Then by the lemma, there exists a tuple theoretic operators compatible with extended relations
t 4 R oi S and t i R. n S.. Since t j R. n S., either can be compatible with traditional set theory.
t f R. or t f S.. (If t r: R. and t E S., then t e R.n$S.,

and by (I), t4 R. n S..) We defineR = (r E R. I r 4. Conclusion
tA t {r}) and also S' = (sE S. I a t 4At (a)). Relational database theory relies heavily on ordi-
By (II) and (IV), t 4 R and t d S'. Then from (4)
we obtain that t 4 if r 5'. Suppose R' - $ . nary set theory. Intuitively, null completion appearswen bai(8), IR A S'. Similarly, $ S ' - m to be important for dealing with nulls. The previously
T, i R. proposed approaches that incorporated null completion

Case L Both differences are e .Then by ( were not compatible with set theory, but it was not
W e 5'. Since minimal rees empty. Then equiva- known whether a compatible approach existed. WeR - $'.Sinc minmalrepresentative of an equiva-

lence class is unique, Jr. = S.. But since R. = R have shown that, if we adopt null completion, our set
d = ' (a subset of a minimal representative is theoretic operators cannot behave according to the in-still a minimal representative (although of a different tuitive rules of ordinary set theory. We are faced with

stlmniml rep es.ative (Th sie adiffnt the Hobson's choice between giving up our intuitive def-
equivalence class)), iR = S'. Then sincei C R. and nitions of set theoretic operators and giving up null
8' c S., Vf c R. n S.. Then t 4 R. n S.. Thisa is
contradiction. completion. We suggest that future work attempt to

Case H. At least one of the differences in non-empty, compensate for the loss of null completion in order toCathoutse Atleastne ofthe diffethrences is non- , save the familiar definitions of set theoretic operators.
Without loss of generality, assume that JV- S' is non-
empty. Then let r 4 R' -S'. Then r t R' (by 5) and Bibliography
(,) d Rf -' S. (By (2) and (I), t 4 T -- (t) T.)
We defined if above so that t 4 (r ). Therefore, t @ JANSI 751 -ANSI/X3/SPARC Study Group on
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pose that t 4 but t T,. Then define R = (r e T. I "Data Models Integration using the Structural
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